Example: Another Junction Diode Model Example

Consider now this circuit:

Using the CVD model, let's estimate the voltage across, and current through, the junction diode.

First, replace the junction diode with the CVD model:

Now we have an IDEAL diode circuit, and therefore we analyze it precisely as we did in section 3.1 !!

ASSUME the IDEAL diode is forward biased (why not ?).
ENFORCE the condition that $v_{0}^{i}=0.0 \mathrm{~V}$ (a short circuit).

ANALYZE the IDEAL diode circuit:
From $\mathrm{KCL} \rightarrow \quad i_{1}=$

Where $\rightarrow \quad i_{1}=0.5 \mathrm{~mA}$
$i_{2}=$
$i_{0}^{i}=$

Therefore $\rightarrow 0.5=$

And thus: $\quad v_{R}=$

So that:

$$
i_{0}^{i}=
$$

CHECK the IDEAL diode assumption:

$$
i_{0}^{i}=-0.1 \mathrm{~mA}<0 \quad X
$$

Yikes! We made the wrong assumption! Let's change our assumption and try again.

Now ASSUME the IDEAL diode is reverse biased.
ENFORCE the condition that $i_{0}^{i}=0.0 \mathrm{~mA}$ (an open circuit).

ANALYZE the IDEAL diode circuit:

From KCL $\rightarrow \quad i_{1}=i_{2}+i_{0}^{i}$

Where $\rightarrow \quad i_{1}=0.5 \mathrm{~mA}$

$$
\begin{aligned}
& i_{2}=\frac{v_{R}}{R_{2}}=\frac{v_{R}}{1}=v_{R} \\
& i_{D}^{i}=
\end{aligned}
$$

Therefore $\rightarrow 0.5=$

Note that we must find the numeric value of v_{0}^{i}, the voltage across the reverse biased IDEAL diode.

From KVL: $\quad v_{R}-R_{3} i_{D}^{i}-v_{D}^{i}-0.7=0$

And since $i_{0}^{i}=0$, we find that:

$$
\begin{aligned}
v_{D}^{i} & =v_{R}-R_{3} i_{D}^{i}-0.7 \\
& =v_{R}-0.7 \\
& =0.5-0.7 \\
& =-0.2 \mathrm{~V}
\end{aligned}
$$

CHECK the IDEAL diode assumption:

$$
v_{0}^{i}=-0.2 \mathrm{~V}<0
$$

Our assumption was correct!

A: NO! We have only determined the current and voltage of the IDEAL diode voltage in our CVD model. These are not the estimated values of the junction diode in our circuit!

Instead, we estimate the junction diode voltage by calculating the voltage across the entire CVD model (i.e., ideal diode and 0.7 V source):

We likewise estimate the current through the junction diode by determining the current through the PWL model (OK, the current through the model is also the current through the ideal diode):

$$
i_{0}=i_{0}^{i}=0
$$

Hopefully, this example has convinced you as to the necessity of carefully, patiently and precisely applying the junction diode models-models that include IDEAL diodes only. Then, you must use the model results to carefully, patiently and precisely determine approximate values for the junction diode.

Each and every step of this process is required to achieve the correct answer-I'll find out later in the semester if you have been paying attention!

