
Example: Another Junction Diode Model Example

Consider now this circuit:

Using the CVD model, let's estimate the voltage across, and current through, the junction diode.

First, replace the junction diode with the CVD model:

Now we have an **IDEAL** diode circuit, and therefore we analyze it **precisely** as we did in section 3.1 !!

+

 $R_3=1K$

 $v_D^i = 0$

0.7 V

 i_D^i

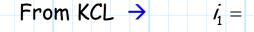
ASSUME the IDEAL diode is forward biased (why not ?).

ENFORCE the condition that $v_D^i = 0.0 \text{ V}$ (a short circuit).

1₂

R₂=1K

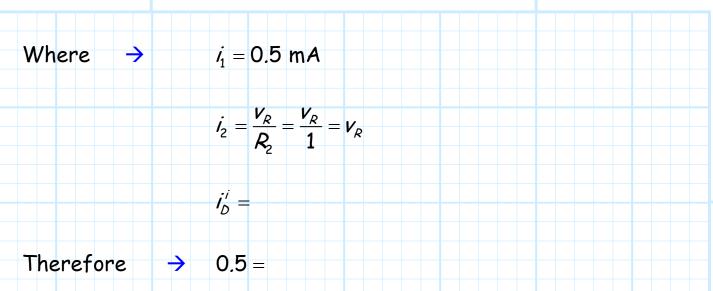
R₁=1K


 i_1

 $i_2 =$

 $i_D^i =$

0.5 mA


Where $\rightarrow i_1 = 0.5 \text{ mA}$

Therefore \rightarrow 0.5 =

And thus: $V_R =$	
So that: $i_D^{\prime\prime}$ =	
CHECK the IDEAL dio	de assumption:
	$i_{D}^{i} = -0.1 \text{ mA} < 0 \text{ X}$
Yikes! We made the wrong assumption! Let's change our assumption and try again.	
Now ASSUME the IDE	EAL diode is reverse biased.
	on that $i_D^{i'} = 0.0 \text{ mA}$ (an open circuit). $=1K \qquad R_3=1K \qquad + i_D^{i'} = 0 \qquad - i_D$
$\mathbf{\nabla}$	\neg ∇

ANALYZE the IDEAL diode circuit:

From KCL \rightarrow $i_1 = i_2 + i_D^{i_1}$

Note that we must find the numeric value of v_{D}^{i} , the voltage across the reverse biased IDEAL diode.

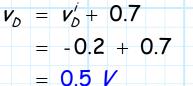
From KVL: $v_{R} - R_{3} i_{D}^{i} - v_{D}^{i} - 0.7 = 0$

And since $i_D^i = 0$, we find that:

$$v'_{D} = v_{R} - R_{3} i'_{D} - 0.7$$
$$= v_{R} - 0.7$$
$$= 0.5 - 0.7$$
$$= -0.2 V$$

CHECK the IDEAL diode assumption:

$$v_{\rm D}^{i} = -0.2 \, {\rm V} < 0$$


Our assumption was correct!

Now, we must estimate the junction diode current and voltage!

Q: What do you mean? I thought we just did that! The diode current is $i_D = 0.0$ and the diode voltage is $v_D = -0.2$ V. Right?

A: NO! We have only determined the current and voltage of the IDEAL diode voltage in our CVD model. These are not the estimated values of the junction diode in our circuit!

Instead, we estimate the junction diode voltage by calculating the voltage across the entire CVD model (i.e., ideal diode and 0.7 V source):

What an *interesting* result! Although the **IDEAL** diode in the CVD model is **reversed** biased, our **junction** diode voltage estimate is **positive** v_D = 0.5 V !!! We likewise estimate the **current** through the junction diode by determining the current through the **PWL model** (OK, the current through the model is **also** the current through the **ideal** diode):

 $i_D = i_D^{\prime} = 0$

Hopefully, this example has convinced you as to the **necessity** of carefully, patiently and precisely applying the junction diode **models**—models that include IDEAL diodes only. Then, you must use the model results to carefully, patiently and precisely determine **approximate** values for the **junction** diode.

Each and every step of this process is required to achieve the correct answer—I'll find out **later** in the semester if **you** have been paying attention!